Full gradient stabilized cut finite element methods for surface partial differential equations
نویسندگان
چکیده
منابع مشابه
Adaptive Finite Element Methods for Partial Differential Equations
The numerical simulation of complex physical processes requires the use of economical discrete models. This lecture presents a general paradigm of deriving a posteriori error estimates for the Galerkin finite element approximation of nonlinear problems. Employing duality techniques as used in optimal control theory the error in the target quantities is estimated in terms of weighted ‘primal’ an...
متن کاملFinite element methods for semilinear elliptic stochastic partial differential equations
We study finite element methods for semilinear stochastic partial differential equations. Error estimates are established. Numerical examples are also presented to examine our theoretical results. Mathematics Subject Classification (2000) 65N30 · 65N15 · 65C30 · 60H15
متن کاملUnfitted Finite Element Methods Using Bulk Meshes for Surface Partial Differential Equations
In this paper, we define new unfitted finite element methods for numerically approximating the solution of surface partial differential equations using bulk finite elements. The key idea is that the n-dimensional hypersurface, Γ ⊂ Rn+1, is embedded in a polyhedral domain in Rn+1 consisting of a union, Th, of (n+ 1)-simplices. The unifying feature of the methodological approach is that the finit...
متن کاملAnalysis of Trace Finite Element Methods for Surface Partial Differential Equations
In this paper we consider two variants of a trace finite element method for solving elliptic partial differential equations on a stationary smooth manifold Γ. A discretization error analysis for both methods in one general framework is presented. Higher order finite elements are treated and rather general numerical approximations Γh of the manifold Γ are allowed. Optimal order discretization er...
متن کاملAdaptive finite element methods for differential equations
Gegenstand des Buches ist die Dual Weighted Residual method (DWR), ein sehr effizientes numerisches Verfahren zur Behandlung einer großen Klasse von variationell formulierten Differentialgleichungen. Das numerische Verfahren ist adaptiv, d.h. es konstruiert eigenständig eine Folge von Approximationen für eine gegebene Fragestellung. Typische Fragestellungen sind die Bestimmung gewichteter Mitte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering
سال: 2016
ISSN: 0045-7825
DOI: 10.1016/j.cma.2016.06.033